Steel Buildings in Europe

Part 10: Technical Software Specification for Composite Beams 10 - 29 Plastic moment resistance Depending on the position of the plastic neutral axis, the expression of the design plastic moment resistance is given hereafter: 1. In the web:         slab M0 y w 2 y M0 w c f f f pl, y Rd 4 1 / 1 1 M f t f t N W b t h t M                               2. In the fillets:         slab M0 y w 2 M0 y w c f f f pl,y Rd 4 1 / 1 1 M f t f t N W b t h t M                               3. In the upper flange:   slab M0 y pl,a pl,a Rd M f M h y by     where:          2 pl,c c f slab h y M N h 6.4 Longitudinal shear resistance 6.4.1 Minimum transverse reinforcement ratio According to EN 1994-1-1 § 6.6.6.3, the minimum transverse reinforcement ratio can be obtained from EN 1992-1-1 § 9.2.2(5): yr,k ck w,min 0,08 f f   where: f ck is the characteristic value of the compression resistance in N/mm 2 f yr,k is the yield strength of the reinforcement bars in N/mm 2 6.4.2 Calculation of the transverse reinforcement ratio The transverse reinforcement ratio is obtained from (EN 1992-1-1 § 6.2.4(4)): f Ed f f sf yd cot  v h s A f  where: A sf / s f is the transverse reinforcement ratio (in cm 2 /m for example) f yd is the design value of the yield strength of the reinforcement bars: f yd = f yr,k /  s

RkJQdWJsaXNoZXIy MzE2MDY=