Steel Buildings in Europe

Title APPENDIX D Worked Example: Design of portal frame using elastic analysis 11 of 44 4 - 92 d N = w y Ed t f N = 10, 2 355 168000  = 46,4  = w w N 2 d d d  = 2 426 426 46, 4   = 0,55 > 0,50 The limit for Class 1 is : 13 1 396    = 13 0,54 1 396 0,81    = 53,3 Then : w t c = 41,8  53,3  The web is class 1. 7.3.2. The flange f t c = 16 73,9 = 4,6 The limit for Class 1 is : 9 ε = 9  0,81 = 7,3 Then : f t c = 4,6  8,3  The flange is Class 1 EN 1993-1-1 Table 5.2 (Sheet 2) So the section is Class 1. The verification of the member will be based on the plastic resistance of the cross-section. 7.4. Resistance of the cross-section 7.4.1. Shear resistance Shear area: A v = A  2 bt f + ( t w +2 r ) t f but not less than  h w t w A v = 2 200 16 (10, 2 2 21) 16 11600        = 6035 mm 2 EN 1993-1-1 §6.2.6 Conservatively  = 1,0. Therefore: A v   h w t w = 1, 0 468 10, 2   = 4774 mm 2  A v = 6035 mm 2  from EN 1993-1-1 §6.2.6(3) V pl,Rd =   M0 v y 3  A f =   3 10 1, 0 355 3 6035   = 1237 kN V Ed = 117 kN < 1237 kN OK Bending and shear interaction When shear force and bending moment act simultaneously on a cross-section, the shear force can be ignored if it is smaller than 50% of the plastic shear resistance. V Ed = 117 kN < 0,5 V pl,Rd = 0,5  1237 = 619 kN EN 1993-1-1 §6.2.8 Therefore the effect of the shear force on the moment resistance may be neglected.

RkJQdWJsaXNoZXIy MzE2MDY=