Steel Buildings in Europe

Title APPENDIX D Worked Example: Design of portal frame using elastic analysis 32 of 44 4 - 113 For z   0,4, the interaction factor, k zy , is calculated as: k zy =                                 b,z,Rd Ed mLT b,z,Rd Ed mLT z 0,25 0,1 ; 1 0,25 max 1 0,1 N N C N N C  0 298 0    C mLT =  0, 6 0, 4  = 0, 6 0, 4 0   = 0,6 EN 1993-1-1 Annex B Table B.3 k zy =                            2238 127 0,6 0,25 0,1 ; 1 2238 127 0,6 0,25 max 1 0,1 0,931 = max ( 0,985; 0,983 ) = 0,985 EN 1993-1-1 Annex B Table B.2 b,Rd y,Ed zy b,z,Rd Ed M M k N N  = 540 0 ,985 298 2238 127  = 0,601 < 1,0 OK 7.10. In-plane buckling The in-plane buckling interaction is verified with expression (6.61) in EN 1993-1-1. 1, 0 b,Rd y,Ed yy b, y,Rd Ed   M M k N N M M M M Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed = 351 kNm V V V N N N = 298 kNm = 701 kNm Assumed maximum moment = 356 kNm = 118 kN = 127 kN = 150 kN = 130 kN = 10 kN = 116 kN Maximum bending moment and axial force in the rafter, excluding the haunch. M Ed  356 kNm N Ed  127 kN The haunch is analysed in Section 8.

RkJQdWJsaXNoZXIy MzE2MDY=