Steel Buildings in Europe

Part 5: Detailed Design of Trusses 5 - 40 For this type of buckling the elastic critical force is: 8368 kN 10 956 369 10 210000 π π 3 2 4 2 2 v v 2 cr,v         l EI N The slenderness for a single angle is: 0,427 8368000 355 4300 ,     cr v y v N Af  The buckling curve to use is curve b and the imperfection factor is:  = 0,34 ) 0,630 0,5 (1 0,34 ( 0,2) 2        v v v Φ   0,915 0,630 0,427 0,630 1 1 2 2 2 v 2 v v v          Φ Φ Conservatively, the resistance to the compression may be evaluated calculating the reduction factor as the product of that for the whole member and that for an individual angle between battens:  = Min(  y ;  z ) ×  v = 0,378 × 0,915 = 0,346 The design buckling resistance of the diagonal is: 1056 kN 10 1,0 355 8600 0,346 3 M1 y b,Rd          Af N 0,591 1,0 1056 624,4 b,Rd Ed    N N The compression resistance is adequate. Local verification of the section to the right of the gusset plate connection This verification carried out in Appendix B Effect of bending moment due to self weight of the diagonal The bending moment is: M y,Ed = 2,20 kNm (see 3.2 above). The elastic modulus of the cross-section for bending in the plane of the truss is: W el,z = 167 cm 3 . Interaction criteria are given in EN 1993-1-1 §6.3.3: 1 / / M1 el,z y z,Ed yz M1 y y Ed      W f M k Af N 1 / / 1 , , 1   el z y M z Ed zz y M z Ed W f M k Af N   

RkJQdWJsaXNoZXIy MzE2MDY=